W matematyce, elementarna teoria liczb jest działem teorii liczb, posługującym się elementarnymi metodami. Zakres elementarnej teorii liczb jest płynny i zmienia się w czasie. Przyjęto, że unika ona stosowania funkcji analitycznych (podczas, gdy stosowanie liczb zespolonych wciąż można uznać za elementarne). Elementarna teoria liczb, choć wydzielona, to zawarta jest w pozostałych działach teorii liczb: w algebraicznej, analitycznej, geometrycznej, kombinatorycznej. Do metod i narzędzi elementarnej teorii liczb zalicza się przystawanie (kongruencje), elementy teorii ciał skończonych i pierścieni przemiennych, elementarne zastosowania zbiorów wypukłych, ułamki łańcuchowe (i podobne narzędzia), elementy analizy matematycznej, jak pojęcie szeregu i granicy, funkcje multyplikatywne, jak na przykład Eulera funkcja.